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Monostroma nitidum, a green seaweed of the Ulvophyceae, remains 
underutilized despite its signi!cant nutritional potential. In 
response to the growing global demand for healthy snack options, 
consumers are increasingly seeking innovative and nutrient-rich 
products. "is research investigated the proximate composition 
of dried green seaweed and developed a nutritious snack. "e 
most suitable conditions for steaming (90°C for 30 min) and air-
drying temperature (60°C) were determined based on sensory 
evaluation and texture analysis. "e !ndings demonstrate that 
the developed seaweed-added snack is suitable for large-scale 
production, with processes aligned to practical manufacturing 
requirements. "is innovative product is expected to introduce 
a new and healthy option to the snack market.

Cited as: Tran, T. H. P., Dinh, T. Q. D., Le, T. T., Nguyen, T. A., & Kha, T. C. (2025). Production of 
healthy snack with addition of Monostroma nitidum. !e Journal of Agriculture and Development 
24(6), 147-159.
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"is research investigated the potential of 
Monostroma nitidum in developing seaweed-
added snacks as healthier alternatives to 
conventional options. Leveraging its nutritional 
bene!ts and environmental advantages, 
incorporating this seaweed into snack products 
could diversify healthy snack o#erings and 
support the growth of the aquaculture sector. 
"e research aimed to determine the best 
formulation, steaming conditions, and air-
drying temperatures to produce a product with 
desirable sensory characteristics and texture. 
"ese !ndings align with the industry’s “Better-
for-You” snack trend and highlights its potential 
to advance sustainable food production practices.

2. Materials and Methods

2.1. Materials

Dried seaweed was sourced from a local 
market in Ninh "uan province, Vietnam. 
Although the exact harvesting process was 
undocumented, local farmers reported 
the seaweed was sun-dried on shelves to a 
moisture content of approximately 20%. It was 
subsequently stored in expanded polystyrene 
boxes and transported to the laboratory. Upon 
arrival, the seaweed was thoroughly washed 
with tap water to remove crustaceans and 
debris, hot air-dried to a !nal moisture content 
of 12%, and stored in sealed containers at 
ambient temperature for further use. Tapioca 
starch (12%, w.b.) and wheat $our (12%, 
w.b.) were supplied by Taikyfood and Meizan 
CLV, respectively. All chemicals used were of 
analytical grade and purchased from Duksan, 
Scharlau, and Sigma-Merck.

1.  Introduction

Seaweeds are nutrient-rich marine vegetables 
containing polysaccharides, proteins, and 
essential and non-essential amino acids, making 
them a valuable and renewable marine resource 
for food applications (Marsham et al., 2007; 
Patarra et al., 2011; Peña-Rodríguez et al., 2011). 
"eir increasing consumption re$ects growing 
awareness of the link between diet and health. 
Emerging marine-based products o#er enhanced 
nutritional bene!ts and potential disease risk 
reduction. Research indicates that incorporating 
seaweeds into food systems can enhance shelf life, 
nutritional value, texture, and sensory attributes 
(Roohinejad et al., 2017).

"e green seaweed Monostroma nitidum has 
garnered signi!cant attention for its nutritional 
value and health bene!ts. In East Asian and 
Southeast Asian countries such as Japan, China, 
Korea, and Vietnam, it is sustainably cultivated 
and harvested to meet consumer demand for 
traditional food products (Kaur et al., 2023). 
Monostroma nitidum is particularly valued 
for its high dietary !ber content, including 
rhamnan sulfate, which has been shown to lower 
blood lipids and cholesterol while alleviating 
vascular in$ammation (Terasawa et al., 2023). 
Its rich nutritional pro!le, comprising essential 
minerals and vitamins, makes it highly versatile 
for incorporation into various products, 
including soups, salads, and snacks (Suzuki & 
Terasawa, 2020).

Traditional snack foods have faced increasing 
scrutiny for their high levels of calorie, sugar, 
salt, and unhealthy fat, raising signi!cant health 
risks. Despite these concerns, the global snack 
market has experienced rapid growth, fueled 
by consumer demand for convenient, quick-
consumption options that are both natural 
and healthy-focused. "is trend highlights an 
opportunity to develop innovative, healthier 
alternatives, such as seaweed-based products.
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reweighed, and blended with drinking water, salt, 
and sugar, as speci!ed in Table 1. "e mixture 
was processed into a !ne paste and boiled for 90 
sec with continuous stirring.

2.2. Seaweed-added snack procedure

To prepare the seaweed-added snack (Figure 
1), 24 g of the previously prepared dried seaweed 
was soaked in drinking water at 30°C for 20 
min. "e so%ened seaweed was then drained, 

Table 1. Formulation of seaweed-added snack products
Ingredients Formula 1 (%) Formula 2 (%) Formula 3 (%)
Seaweed (d.b) 5.56 7.28 8.93
Tapioca starch (d.b) 30.17 29.61 29.08
Wheat $our (d.b) 5.70 5.61 5.5
Water 46.32 45.47 44.66
Salt 1.16 1.14 1.12
Sugar 5.56 5.46 5.36

Figure 1. Procedure of seaweed-added snack. 
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2.3.3. Color measurement

"e color of seaweed chip samples was 
assessed using a Minolta Chroma Colorimeter 
(CR-400 Konica Minolta Sensing, Inc., Tokyo, 
Japan), based on CIE Lab coordinates: lightness 
(L), redness/greenness (a), and yellowness/
blueness (b). Ten replicates were measured per 
sample. Chroma (C), hue angle (H°), and total 
color di#erence (&E) were calculated using the 
following equations:

2.3.4. Shear force analysis of seaweed-
added snack

Shear force analysis of fried seaweed chips was 
performed using a Materials Testing Machine 
(zwickiLine Z1.0, ZwickRoell, Germany) with 
a Kramer shear cell (99 × 100 × 90 mm: height 
× width × depth). A 500 N load cell was used 
at a crosshead speed of 60 mm/min. Four chip 
samples were tested per run, with six replicates. 
"e measured parameters included Fmax, 
WFmax, W, and n (number of maxima).

2.3.5. Sensory evaluation

A sensory evaluation was conducted with 
a trained panel of 25 members (aged 24 - 50 
years). Panelists evaluated texture and overall 
acceptability using a randomized presentation 
order and a 9-point scale (0 = dislike extremely; 
9 = like extremely). "e scores were converted to 
numerical values for statistical analysis.

"e seaweed paste was mixed with tapioca 
starch and baking powder until smooth, then 
poured into cylindrical molds (radius ~1.5 
cm, height ~3 cm). "e molds were steamed 
under four conditions: 85°C for 30 min (1) and 
45 min (2), 90°C for 30 min, and 95°C for 30 
min. A%er steaming, the molds were cooled to 
ambient temperature and refrigerated at 8 - 10°C 
overnight to allow the dough to fully set. 

"e !rm dough was sliced into thin chips 
(~1.5 mm thick) and hot-air dried at 55, 60 and 
65°C until crispy, with a !nal moisture content of 
5 - 6%. "e dried seaweed chips were stored in 
polyethylene bags and placed in a desiccator for 
subsequent analysis.

Preparation of fried seaweed-added 
snack: Samples (3 cm in diameter) from each 
formulation were fried in vegetable oil at 
approximately 175°C. During frying, the chips 
were gently pressed with chopsticks to ensure 
even pu(ng and were fried until they turned 
light golden.

2.3. Analytical methods

2.3.1. Proximate analysis of dried seaweed

"e proximate composition of dried seaweed 
was analyzed in triplicate using AOAC standard 
methods, including moisture (950.46.b), ash 
(920.153), crude fat (960.39), crude protein 
(984.13), and crude !ber (978.10). Total 
carbohydrate was calculated as:

Total carbohydrate (%) = 100 - Moisture (%) 
- Ash (%) - Protein (%) - Lipid (%)

2.3.2. Water activity

Water activity was measured at 25°C using an 
Aqualab Series 3 water activity meter (Decagon 
Devices, USA).

C = √ a2-b2 (Eq.2)

Ho = Arctan(    )b
a (Eq.3)

∆E = √(a - ao)2 + (b - bo )
2 + (L - Lo )

2 (Eq.1)
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For comparison, M. oxyspermum from the 
Hawaiian Islands showed ash (22.4 ± 0.5%), 
protein (9.6 ± 0.2%), carbohydrate (31.8 ± 0.8%), 
and lipid (3.8 ± 0.1%) contents (McDermid 
& Stuercke, 2003). Similarly, M. undulatum 
Wittrock from Southern Argentina showed 
protein levels (12.9 - 21.9%), ash (33.9 - 40.1%), 
lipid (0.3 - 1.5%), !ber (14.4 - 19.6%), and 
digestible carbohydrates (20.9 - 32.5%) (Risso et 
al. (2003).

Although M. nitidum has lower protein 
content than M. oxyspermum and M. 
undulatum, it remains a valuable source of 
macronutrients and dietary !ber. Its rhamnan 
sulfate polysaccharide o#ers unique bioactive 
properties, supporting its potential application 
in developing healthy snack products.

3.2. E"ect of seaweed addition on the quality of 
seaweed-added snack

"e color pro!les of the seaweed-added 
snacks, in$uenced by varying seaweed additions, 
are presented in Table 2 and Figure 2. "e highest 
chroma value was observed at 7.28% seaweed 
addition, likely due to the presence of natural 
pigments, enhancing the color saturation. "e 
added seaweed interacts with the starch/$our 
mixture, blending its greenish pigment with 
the o#-white color. "is blending can cause 
a color perception shi% towards the yellow 
spectrum. Changes in the color of the product 
provide insight into the degree of cooking and 
pigment degradation during frying (Han & 
Tran, 2018). "e color di#erences were found 
to be signi!cantly di#erent as the percentage of 
seaweed added increased: 1.17 (5.56 vs 7.28%), 
2.49 (7.28 vs 8.93%), and 2.48 (5.56 vs 8.93%). 
"ese measurements ensure that the seaweed 
snacks maintain a consistent and appealing 
appearance, in$uencing consumer perception 
and preference.

2.4. Statistical analysis

Experiments were designed as a completely 
randomized single-factor model, with snack 
formulations, steaming conditions, and drying 
temperatures as factors. Data were analyzed 
using SPSS (version 20.0, IBM Corp., USA). 
All experiments were conducted in triplicate, 
and results are expressed as means ± standard 
deviations. Duncan’s multiple range test was 
applied to identify signi!cant di#erences (P < 
0.05) between treatment means.

3. Results and Discussion

3.1. Proximate analysis of green seaweed and 
seaweed-added snack products 

"e chemical composition of dried green 
seaweed revealed the following: moisture content 
(28.34 ± 0.33%), carbohydrate (38.62 ± 0.93%), 
protein (6.52 ± 0.44%), fat (1.02 ± 0.35%), ash 
(25.50 ± 0.95%), and !ber (0.93 ± 0.02%). 
Although studies on its nutritional composition 
are limited, this seaweed is closely related to 
Ulva lactuca, a green seaweed with notable 
commercial applications. Monostroma nitidum is 
recognized for its rhamnan sulfate-rich cell walls, 
which have demonstrated bioactivities such 
as anticoagulant, thrombolytic, antiviral, anti-
obesity, and anti-in$ammatory e#ects (Terasawa 
et al., 2020; Shimada et al., 2021). 

"e protein content of dried Monostroma 
nitidum is lower than that of red and brown 
seaweeds (Fleurence, 1999) but comparable to 
other green seaweeds, such as Ulva lactuca (4.3 
and 16.21%) (Smith & Young, 1955; Castro-
González et al., 1996; Fleurence, 1999). Its lipid 
content is very low, consistent with other green 
seaweeds. Protein and lipid levels in algae vary 
due to external factors like seasonality, maturity, 
and environmental conditions (Fleurence, 1999; 
Madhusudan & Baskaran, 2023). 
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into the polymer network of the snacks resulted 
in notable textural changes. Kramer shear test 
results revealed signi!cant di#erences in the 
force and work required to break the snack 
pieces, providing a detailed assessment of their 
physical properties.

Table 2. Color parameters of seaweed-added snack products

Table 3. Texture measurement parameters of seaweed-added snack products

Table 4. Sensory properties of the fried seaweed-added snack

Formula Lightness (L) Hue angle (H°) Chroma (C)
1 45.2 ± 1.2a 88.8 ± 0.3b 216.2 ± 22.2b

2 45.1 ± 0.7a 89.4 ± 0.1a 240.7 ± 24.0a

3 42.7 ± 1.5b 89.0 ± 0.2b 224.0 ± 25.3ab

!e data represent mean values ± standard deviation (n = 10). Values with di$erent superscript letters in the 
same column for each experiment are signi%cantly di$erent (P < 0.05).

Formula Fmax Fwith WFmax W n (Maxima)
1 221.0 ± 53.1a 33.1 ± 8.3a 1159.4 ± 343.7a 1591.3 ± 353.2a 27.1 ± 4.2a

2 170.2 ± 16.1b 26.3 ±1.8b 936.8 ± 133.7b 1288.7 ± 98.3b 26.4 ± 4.2a

3 158.6 ± 15.0b 23.1 ± 2.1b 821.6 ± 135.7b 1129.3 ± 109.9c 23.7 ± 2.9b

!e data are the mean values ± standard deviation (n = 3). Values with di$erent superscript letters in the same 
column for each experiment are signi%cantly di$erent (P < 0.05).

Formula Color Flavor Texture Overall 
1 6.7 ± 0.8b 6.6 ± 0.8a 5.9 ± 0.8b 6.3 ± 0.8b

2 7.2 ± 0.9ab 7.0 ± 1.0a 7.1 ± 1.2a 7.4 ± 0.9a

3 7.2 ± 0.7a 7.0 ± 0.8a 7.2 ± 1.0a 7.0 ± 0.7a

!e data represent mean values ± standard deviation (n = 3). Values with di$erent superscript letters within 
the same column for each experiment are signi%cantly di$erent (P < 0.05).

Figure 2. Seaweed-added snack samples.

Tables 3 and 4 demonstrate the impacts of 
formulations on the textural properties and 
sensory evaluation of the seaweed-added snack, 
respectively. "e texture of the fried products 
was in$uenced by the frying process, as oil 
absorption and expansion occur, as well as the 
snacks’ oil content. Incorporating seaweed !ber 
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additions in extruded products. "is discrepancy 
may be attributed to the type of !bers used, 
warranting further investigation.

Hanand Tran (2018) studied corn snacks with 
high !ber content and found that di#erent !ber 
types in$uence hardness and crispness in distinct 
ways. "e impact of !ber addition is determined not 
only by its content but also on the molecular weight 
and structu1re of the polymer (Peressini et al., 2015). 

3.3. E"ect of steaming conditions on the 
seaweed-added snack

Table 5 presents the e#ect of steaming 
conditions on snack color. Natural pigments 
in seaweed are best preserved at 90°C for 30 
min, ensuring proper hydration and starch 
gelatinization. Higher temperatures or longer 
durations may cause over-steaming or pigment 
degradation, reducing color intensity. "e &E 
values comparing di#erent conditions are as 
follows: 85°C for 30 min vs. 85°C for 45 min, 90°C 
for 30 min, and 95°C for 30 min were 2.79, 1.52, 
and 2.04, respectively. Comparisons between 
85°C for 45 min vs. 90°C for 30 min and 95°C 
for 30 min yielded &E values of 2.04 and 3.85, 
respectively, while the di#erence between 90°C 
for 30 min and 95°C for 30 min was 2.11. Most 
&E values were signi!cantly di#erent (1.5 < &E < 
3), except for the comparison between 85°C for 
45 min and 90°C for 30 min, where the di#erence 
was highly signi!cant. "ese !ndings suggest 
that lower temperatures with longer durations 
are less e#ective in preserving color.

Table 5. Color parameters of seaweed-added snack products
Treatment Lightness (L) Hue angle (H°) Chroma (C)
85℃ (1) 47.3 ± 1.3b 88.6 ± 0.3c 278.1 ± 18.9b

85℃ (2) 45.1 ± 0.7a 89.4 ± 0.1b 240.7 ± 24.0c

90℃ 47.2 ± 1.0b 89.4± 0.2b 314.4 ± 31.6a

95℃ 45.4 ± 2.2a 89.8 ± 0.1a 292.1 ± 32.7b

!e data represent mean values ± standard deviation (n = 10). Values with di$erent superscript letters in the 
same column for each experiment are signi%cantly di$erent (P < 0.05).

Fmax or maximum force, represents the peak 
force required to shear through the snack, 
re$ecting its resistance to breaking and correlating 
with its crunchiness or hardness. A higher Fmax 

indicates a harder texture. At lower seaweed 
content, the Fmax values are signi!cantly higher, 
suggesting harder snacks requiring more force to 
break. Conversely, higher seaweed content (7.28 
and 8.93%) produces more porous, resulting in 
lower Fmax values. "is is due to the ingredient 
network; higher tapioca starch incorporation 
forms a denser structure with fewer air pockets, 
leading to higher hardness and reduced crispiness. 

Increasing seaweed !ber content reduces 
cohesiveness, creating more air cells with thinner 
walls and so%er snacks. While starch is critical for 
pu(ng (Anton et al., 2009; Oliveira et al., 2017), 
fortifying snacks with seaweed !ber enhances 
both physical properties and nutritional value. 
"is adjustment slightly reduces hardness and 
!rmness while maintaining a desirable texture.

Work (W) and work to maximum force 
(WFmax) measure the total energy required during 
the shearing process or to reach the maximum 
force, re$ecting the snack’s !rmness and resistance 
to breaking. Higher work values indicate a tougher 
texture. Increased !ber content results in less 
dense structures with larger, more uniform pores, 
leading to greater expansion, which is evident 
visually and through mouthfeel. Consequently, 
the snacks become so%er and crispier, aligning 
with the desired textural characteristics of the !nal 
product. "ese !ndings contrasts with Deli) et al. 
(2023), who reported di#ering e#ects of !ber-rich 
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steaming at 85°C for 45 min results in higher 
work values required to break the snacks, as 
the well-developed starch network  creates 
a !rmer, denser texture. At 90°C for 30 min, 
starch gelatinization is su(cient to produce 
a !rm texture without excessive toughness. 
Sensory evaluation revealed superior overall 
acceptability at 90°C, correlating with desirable 
textural properties (minimized key parameters) 
and desirable chroma values. Although steaming 
at 95°C yielded higher lightness and hue angle, 
the 90°C treatment achieved a well-balanced 
combination of sensory attributes, texture, and 
color, while reducing energy consumption. 
Sensory analysis further con!rmed that snacks 
processed under these conditions exhibited a 
crisp, !rm texture with a pleasant crunch.

Steaming plays a crucial role in the dough’s 
internal structure, in$uencing subsequent 
drying and frying processes. "e e#ects of 
steaming on the texture and sensory evaluation 
are shown in Tables 6 and 7, respectively. Proper 
gelatinization and hydration of starch are the 
crucial factors for attaining the desired texture 
in the !nal fried product. During gelatinization, 
starch granules swell and become cohesive, 
with the extent of gelatinization dependent 
on steaming temperature and time. Adequate 
hydration allows better interaction between 
starch and other ingredients, resulting in a more 
uniform structure. 

Well-steamed dough exhibits a higher 
expansion ratio and enhanced oil absorption, 
contributing to improved crispiness. Extended 

Table 6. E#ects of steaming conditions on texture measurement parameters of seaweed-added snack 
products

Table 7. E#ects of steaming conditions on sensory properties of the fried seaweed-added snack

Treatment Fmax Fwith WFmax W n (Maxima)
85℃ (1) 169.5 ± 26.4a 20.4 ± 2.2c 724.3 ± 134.4b 979.5 ± 118.4c 23.4 ± 3.0b

85℃ (2) 170.2 ± 16.1a 26.3 ± 1.8a 936.8 ± 133.7a 1288.7 ± 98.3a 26.4 ± 4.2a

90℃ 157.3 ± 16.5a 20.3 ± 3.0c 736.7 ± 140.1b 982.1 ± 151.2c 22.7 ± 3.5b

95℃ 157.3 ± 21.9a 23.3 ± 3.3b 810.6 ± 201.7b 1139.8 ± 167.4b 23.0 ± 3.6b

!e data are the mean values ± standard deviation (n = 3). Values with di$erent superscript letters in the same 
column for each experiment are signi%cantly di$erent (P < 0.05).

Treatment Color Flavor Texture Overall 
85℃ (1) 6.3 ± 1.3c 6.5 ± 0.6a 6.4 ± 0.7b 6.6 ± 0.8b

85℃ (2) 7.2 ± 0.9a 7.0 ± 1.0a 7.1 ± 1.2a 7.5 ± 0.9a

90℃ 6.7 ± 0.9ab 7.0 ± 0.9a 7.0 ± 0.71a 7.3 ± 0.7a

95℃ 6.4 ± 1.2bc 6.5 ± 0.8a 6.6 ± 0.7ab 6.5 ± 0.8b

!e data represent mean values ± standard deviation (n = 3). Values with di$erent superscript letters within 
the same column for each experiment are signi%cantly di$erent (P < 0.05).
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drying rate slows, re$ecting the removal of water 
from within the seaweed structure. At 65°C, 
the moisture content decreased from 56.11 to 
3.48% in 210 min, making it the fastest drying 
time. However, higher temperatures may cause 
thermal degradation of heat-sensitive pigments 
and nutrients.

"e drying process a#ects the !nal color 
intensity of the snack product (Table 8). Excessive 
temperatures can degrade heat-sensitive 
pigments, leading to color loss, as indicated by 
decreases in the L and C values, while the H° 
value remains consistent at 88-89°. "e H° value 
represents the perceived color, which is critical 
for product consistency. Prolonged drying 
exposes pigments to oxidation, dulling the color, 
while rapid drying can stress cell structures, 
causing pigment loss. "ese !ndings suggest 
that increased thermal energy accelerates 
browning. "e &E value showed signi!cant 
di#erences between 55 and 60, and 65°C, but the 
di#erence between 60 and 65°C was less than 
1.5, indicating no signi!cantly variation.

3.4. E"ect of drying temperature on the 
seaweed-added snack

Drying experiments were conducted at 55, 
60 and 65°C, as illustrated in Figure 3. "e 
drying process begins with a rapid decrease 
in moisture content at all temperatures due to 
surface water evaporation. Following this, the 

At 60°C, the drying curves show steeper 
initial slopes, indicating a faster drying rate and 
shorter drying time compared to 55°C. Lower 
temperatures result in slower drying, which 
may better preserve heat-sensitive components 
but require longer drying times. However, 
prolonged drying at lower temperatures can 
lead to oxidation, a#ecting color and texture. 
Faster drying at higher temperatures may cause 
crust formation, trapping moisture inside and 
resulting in uneven drying. Preliminary studies 
suggest the desired moisture content of 4 - 5% 
is reached when the snack can be broken in half 
by hand, con!rming both proper drying and 
optimal texture.

Figure 3. Drying curve of seaweed-added snack product.
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Table 8. Color parameters of seaweed-added snack products

Table 9. Texture measurement parameters of seaweed-added snack products

Table 10. Sensory properties of the fried seaweed-added snack

Drying Temperature (℃) L* Chroma (C) Hue angle (H°)
55 44.3 ± 2.4a 222.0 ± 29.4a 89.1 ± 0.2a

60 39.3 ± 2.3b 206.1 ±23.4ab 88.9 ± 0.2b

65 39.0 ± 2.6b 185.5 ±30.7b 89.0 ± 0.1ab

!e data represent mean values ± standard deviation (n = 10). Values with di$erent superscript letters in the 
same column for each experiment are signi%cantly di$erent (P < 0.05).

Temperature (℃) Fmax Fwith WFmax W n (Maxima)
55 195.1 ± 17.6a 28.0 ± 4.3a 907.7 ± 92.9a 1374.4 ± 232.4a 23.6 ± 4.7a

60 165.2 ± 15.9b 25.3 ± 3.1a 772.0 ± 154.5b 1234.7 ± 153.3a 24.0 ± 2.6a

65 147.9 ± 10.5c 20.1 ± 1.4b 724.9 ± 92.6b 977.8 ± 71.0b 20.9 ± 2.3a

!e data are the mean values ± standard deviation (n = 3). Values with di$erent superscript letters in the same 
column for each experiment are signi%cantly di$erent (P < 0.05).

Temperature (℃) Color Flavor Texture Overall
55 6.7 ± 0.8b 6.6 ± 0.7b 6.9 ± 0.8a 6.8 ± 0.7b 

60 7.3 ± 0.8a 7.1 ± 0.9a 7.3 ± 0.63a 7.2 ± 0.7a

65 6.8 ± 0.7b 7.0 ± 0.8ab 7.0 ± 0.8a 6.8 ± 0.7b

!e data represent mean values ± standard deviation (n = 3). Values with di$erent superscript letters within 
the same column for each experiment are signi%cantly di$erent (P < 0.05).

!ber-starch network, leading to higher WFmax 
and W values, while rapid drying at higher 
temperatures weakens this network, making 
the structure so%er and less cohesive. Moisture 
migration also contributes to the formation of 
cavities, enhancing the brittle, porous texture 
(Liang et al., 2024).

including Fmax, Fwith, WFmax, W, and n (Maxima) 
are detailed in Table 11. Flavor scores were 
high, suggesting that seaweed incorporation 
does not negatively impact sensory perception. 
"e preferred sample contained 7.28% seaweed, 
steamed at 90°C for 30 min, and dried at 65°C, 
o#ering the best texture and sensory qualities 
for a crisp and $avorful snack.

"e addition of !ber to seaweed-added snacks 
creates a more complex and porous network, as 
evidenced by the texture measurement (Table 9) 
and sensory evaluations (Table 10). Fibers a#ects 
moisture distribution and retention, creating 
micro-cavities that disrupts the starch structure, 
resulting in a lighter, more brittle texture. Slow 
drying at lower temperatures preserves the 

3.5. Correlation between sensory and 
instrumental texture measurements

Flavor, hardness, and crispness are key 
sensory attributes of snack foods. A linear 
negative correlation between instrumental 
texture data and sensory scores was observed, 
with higher force or work correlating to lower 
sensory scores (approaching -1). "e correlation 
coe(cients for texture and sensory scores, 
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Table 11. Correlation coe(cients between instrumental texture measurement and sensory evaluation 
for fried seaweed-added snack

Fmax Fwith WFmax W
Texture -0.996 -0.974 -0.967 -0.966
Overall -0.839 -0.755 -0.737 -0.734
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